
Dr Jekyll and Mr C

Robert Ennals
Intel Research Cambridge
robert.ennals@intel.com

Abstract
Jekyll is a high level programming language that can be translated
losslessly to and from human readable, human editable C. This
makes it possible to maintain Jekyll and C versions of the same file,
with any changes made to one file being automatically reflected into
the other.

By being losslessly inter-translatable with C, Jekyll reduces
the switching costs normally associated with moving to a new
language. If a programmer does not know Jekyll, or a tool does
not understand Jekyll, or the Jekyll compiler ceases to be available,
then developers can simply use the C version of a file, rather than
the Jekyll version.

Jekyll enhances C with many high level features, including
safety, generic types, lambda expressions, and type classes. All
features have been carefully designed so that they map elegantly
to and from C.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Code generation; D.3.2 [Programming Languages]: Ap-
plicative (functional) languages

1. Introduction
The programming language community has produced many pro-
gramming languages that improve on C in useful ways. They have
produced languages that are easier to use, easier to understand,
safer, more portable, more reusable, and better able to express
concurrency. But, despite all this, a large proportion of software
projects continue to use C.

Prior work suggests that developers continue to use C because
it has built up such a strong ecosystem that the switching costs
associated with moving to a new language are too great [35, 20].
In particular:

• Their software is already written in C

• Their libraries are written in C

• Their programmers only understand C

• Their tools only understand C

• They don’t want to trust a language that might not be main-
tained in 10 years time

Historically, languages that have achieved widespread adoption
have done so using a combination of three techniques:

[copyright notice will appear here]

Basic Jekyll File Original C File

Translate

New Jekyll File

Translate
Jekyll Programmer

New C File

C Programmer

Updated C FileUpdated Jekyll File

Translate

Figure 1. A Jekyll programmer and a C programmer can work on
the same file

• Attack a niche in which no other language has built up a strong
ecosystem (e.g. Perl [37] for string processing or SQL [6] for
database queries).

• Build up a new ecosystem from scratch (e.g. Java [14] and
C# [5], using the muscle of large global companies).

• Exploit the ecosystem of an existing language by having some
degree of compatibility with that language (e.g. C++ [33] and
Objective C [27], which are supersets of C).

1.1 Lossless Translation

Previous languages have exploited C’s ecosystem by being inter-
operable with C, meaning that modules written in the new language
can be linked against C modules; or by being supersets of C,
meaning that modules written in C can be compiled in the new
language.

Our language, Jekyll, goes a step further, by being losslessly
inter-translatable with C. Every file in a Jekyll/C project corre-
sponds directly to a C file, with both the Jekyll and C versions of a
file being human-readable and fully editable. If either file is modi-
fied then the changes can be automatically reflected into the other
version of the file (Figure 1).

This approach significantly reduces the switching costs of using
Jekyll in place of C. It is not necessary for all tools and program-
mers to know Jekyll, since they can work with the C versions of
Jekyll files. Similarly, if Jekyll ceases to be supported, then one can
simply continue development with the C version of the program.

When we say that Jekyll can be translated losslessly to and
from C, we mean that if one translates a Jekyll file to C, and then
translates that file back to C, that file is guaranteed to be bit-for-bit
identical to the original C program, preserving layout, comments,
and everything else. Moreover, if a file is translated to C, edited in
C, and then translated back to Jekyll, it is guaranteed that the only
changes in the Jekyll file will be those corresponding to the changes
made by the C programmer. This is important as past research has
shown that developers will not accept tools that make widespread
changes to their programs [4].

1 2005/11/9

1.2 The Jekyll Language

If Jekyll was a simple C-like language with C-like features then
such inter-translation might be quite simple; however Jekyll goes
considerably beyond the feature set of C, offering many of the fea-
tures found in modern functional languages such as Haskell [29].
Amongst other things, Jekyll supports algebraic data-types, pattern
matching, lambda expressions, type classes [12, 36, 16], parametric
polymorphism, and full type safety.

Jekyll’s lossless translation is not merely a matter of expanding
Jekyll expressions to larger C expressions. Many Jekyll features do
not map simply into C, and the C code will often place expressions
in a very different order to the Jekyll code. Lossless translation
thus requires fairly sophisticated techniques, which we describe in
Section 4.

1.3 Contributions

The contributions of this paper are:

• The design of a new language (Jekyll) that is losslessly inter-
translatable with C (Section 2).

• A method of encoding Jekyll into C such that the C can be
translated back to Jekyll (Section 3).

• A method for ensuring that translation between C and Jekyll is
lossless (Section 4).

We believe that the lossless translation approach described in
this paper could be applied more generally. Indeed we are exploring
designs for a language that is inter-translatable with COBOL, a
language that is inter-translatable with Verilog, and a language that
is inter-translatable with Java.

This paper does not attempt to give a detailed description of the
Jekyll language and its features. Instead, the aim of this paper is
to give an overview of the lossless translation approach that Jekyll
uses.

All features described in this paper have been implemented in
our Jekyll translator, which is available on SourceForge at:http:
//sourceforge.net/projects/jekyllc

2. The Jekyll Language
The Jekyll language is a superset of C, and thus most C programs
are valid Jekyll programs. The only cases in which compatibility is
not preserved are where the C program uses names that conflict
with Jekyll keywords, where the C program uses macros in a
way that Jekyll does not understand (Section 2.8), or where the C
program uses compiler-specific extensions that Jekyll does not yet
support (Section 2.9).

The current version of Jekyll adds the following features to C:

• Tagged unions / Algebraic datatypes (Section 2.1)

• Generic types / Parametric polymorphism (Section 2.2)

• Stack-allocated Closures and Lambda expressions (Section 2.3)

• Extended Initialiser Expressions (Section 2.4)

• Type-classes (Section 2.5)

• Safety (Section 2.6)

In the following sections, we will give an overview of how each
of these features work, with reference to the example Jekyll code
on the left hand side of Figure 2. The syntax of Jekyll is given

formally1 in Figure 3, in which we show the changes we made to
the standard EBNF syntax of ANSI C [17, 31].

2.1 Tagged Unions

Tagged unions make it easy and safe to work with values that
can have several types. Jekyll’s tagged unions are very similar to
Cyclone’s [15] tagged unions and ML’s datatypes [24]. The syntax
for declaring a tagged union is the same as for a struct or union,
except that thetagged keyword is used. For example, line11 of
Figure 2 defines a tagged union calledList that is either aNode or
nothing.

Unlike a normal union, a value of tagged union type knows
which of the given types it is. To read from a tagged union, one can
use aswitch statement to extract the correct value from a tagged
union. For example line17 examinesc, bindingnode to aNode if c
is aNODE.

2.2 Generic Types

Generic types are perhaps most commonly used for collections.
They allow one to define a type that is parameterised over one or
more other types. Without generic types, one finds oneself having
to repeatedly cast values to and fromvoid*, which is not only
awkward but potentially unsafe.

Jekyll’s generic types are very similar to those provided by
C++ [33], ML [24], and later versions of Java [14]. Jekyll allows
one to declare a name to be a type variable name using thetypevar
keyword, as used on line1. Declarations ofstruct andtagged
types can be parameterised by one or more type variables, as seen
on lines 5 and 11. To instantiate a parameterised type, one must
specify the type arguments in the declarator, as shown in line7.

Function arguments and return values can also contain type vari-
ables. Line16 shows amap function that can perform an operation
on all the elements in a list, regardless of the type of the list’s ele-
ments.

Unlike C++, Jekyll only allows one to refer to type variables by
pointer. The following declaration is thus illegal:

struct<a> withint {a data, int extra};

A field cannot be of type “a” since the size of “a” is not known
at compile time. Unlike C++, Jekyll generates only one C definition
for each Jekyll definition, and thus all sizes must be statically
resolvable. While relaxing this restriction would make Jekyll more
expressive, it would also make the generated C code less readable.

2.3 Stack-Allocated Closures and Lambda Expressions

A closure is a function that carries an environment with it. Jekyll
defines a closure type, distinguished from the standard C function
type by the use of a “!” symbol before the function arguments
(line 27). Like ALGOL [25], Jekyll allocates closure environments
on the stack. It is thus illegal for a value of closure type to be either
returned or stored in a structure.

Lambda expressions (line52) allow one to define a closure. In the
current version of Jekyll, closures are only permitted as function
arguments. The syntax for passing a closure resembles the syntax
for if andwhile — the closure body is wrapped in braces and is
placed after the function call parenthesis. If the closure has any
arguments then these are separated from the closure body by a
colon.

To return a value, a lambda expression must use theret key-
word, rather thanreturn. This maintains consistency withwhile,

1 The syntax of our current implementation is actually a bit broader than
given here. We have omitted the syntax for features not described in this
paper.

2 2005/11/9

http://sourceforge.net/projects/jekyllc
http://sourceforge.net/projects/jekyllc

Jekyll Code C Code⇒
⇓ (using macros from Figure 4)

1 typevar a,b,col;
2 typedef tagged List List;
3 typedef struct Node Node;
4

5 struct<a> Node{
6 a *element;
7 List<a> *tail;
8 };
9

10 /* a list of elements of type ’a’ */
11 tagged<a> List{
12 Node<a> NODE;
13 void EMPTY; /* an empty list */
14 };
15

16 List *listmap(List<a>* c, b *f!(a *x)){
17 switch(*c){
18 case EMPTY: return new EMPTY;
19 case NODE n:
20 return new NODE {
21 f(n.element),
22 listmap(n.tail,f)};
23 }
24 }
25

26 interface Mappable col{
27 col *map(col<a> *c, b *f!(a *x));
28 };
29

30 implement Mappable tagged List{
31 List *map(List<a>* c, b *f!(a *x)){
32 return listmap(c,f);
33 }
34 }
35

36 interface Num a{
37 a* plus(a* x, a* y);
38 a* fromInt(int x);
39 };
40

41 implement Num int{
42 int* plus(int* x, int* y){return new *x + *y;}
43 int* fromInt(int x){return new x;}
44 }
45

46 a* plusint<Num a>(a *x,int y){
47 return plus(x,fromInt(y));
48 }
49

50 /* demonstrate lambda expressions */
51 List<int>* all_plus2(List<int>* l){
52 return map(l){int* x: ret plusint(x,2);};
53 }

1 #include <jekyll_1.h>
2 typevar a,b,col;
3 typedef tagged List List;
4 typedef struct Node Node;
5

6 struct _p(a) Node{
7 a *element;
8 List _p(a) *tail;
9 };

10

11 /* a list of elements of type ’a’ */
12 tagged _p(a) List{enum{NODE, EMPTY} tag;union{
13 Node _p(a) NODE;
14 _void (EMPTY); /* an empty list */
15 }body;};
16

17 List _p(b) *listmap(List _p(a)* c, b *f(_envarg, a *x), void* f_env){
18 switch(_match (*c).tag){
19 _fwd Node _p(a) n;
20 _temp List *_tmp1;
21 _temp List *_tmp0;
22 case EMPTY:
23 _tmp0 =(List*) GC_malloc(sizeof(List));
24 (*_tmp0).tag= EMPTY; return _tmp0;
25 case NODE: _tagbody n =(*c).body.NODE;
26 _tmp1 =(List*) GC_malloc(sizeof(List));
27 (*_tmp1).tag= NODE; {
28 (*_tmp1).body.NODE.element =
29 f(_env f_env, n.element);
30 (*_tmp1).body.NODE.tail =
31 listmap(n.tail,f,_env NULL);}
32 return _tmp1;
33 }
34 }
35

36 interface Mappable _p(col){
37 col _p(b) *(*map)(_envarg, col _p(a) *c, b *f(_envarg, a *x), void* f_env);
38 };
39

40 implement (Mappable, tagged, List,,);
41 List _p(b) *List_map(_dictenv(Mappable, List)
42 ,List _p(a)* c, b *f(_envarg, a *x), void* f_env){
43 return listmap(c,f,_env NULL);
44 }
45 _dictionary struct {
46 List _p(b) * (*map)(_dictenv(Mappable, List)
47 ,List _p(a) *c, b *f(_envarg, a *x), void* f_env);
48 } List_Mappable_dict = {&List_map};
49

50 interface Num _p(a){
51 a* (*plus)(_envarg, a* x, a* y);
52 a* (*fromInt)(_envarg, int x);
53 };
54

55 implement (Num,, int,,);
56 int* int_plus(_dictenv(Num, int), int* x, int* y){
57 _temp int *_tmp0;
58 _tmp0 =(int*) GC_malloc(sizeof(int));
59 (*_tmp0) = *x + *y;return _tmp0;}
60 int* int_fromInt(_dictenv(Num, int), int x){
61 _temp int *_tmp0;
62 _tmp0 =(int*) GC_malloc(sizeof(int));
63 (*_tmp0) = x;return _tmp0;}
64 _dictionary struct {
65 int * (*plus)(_dictenv(Num, int), int *x, int *y);
66 int * (*fromInt)(_dictenv(Num, int), int x);
67 } int_Num_dict = {&int_plus, &int_fromInt};
68

69 a* plusint(_typaram(Num, a), a *x,int y){
70 return _argdict(Num,a)->plus(_argenv(Num,a), x,
71 _argdict(Num,a)->fromInt(_argenv(Num,a), y));
72 }
73

74 _localfun int *all_plus2_lambda_0(_envarg,int* x){ ret plusint(
75 _globdict(Num,int),_env NULL, x,2);}
76

77 /* demonstrate lambda expressions */
78 List _p(int)* all_plus2(List _p(int)* l){
79 return List_map(_env NULL, l,
80 _g(void*(*)(void*,void*))_localfun &all_plus2_lambda_0,_env NULL);
81 }

Figure 2. Jekyll and C views of an example program — The C code uses the macros from Figure 4

3 2005/11/9

struct-or-union ::= tagged| struct | union
struct-or-union-specifier ::= struct-or-union{〈〈〈 tyvar-name+/, 〉〉〉}? identifier{ struct-declaration+} | . . .

type-specifier ::= tyvar-name| typevar | void | char | short | long | . . .
declarator ::= {〈〈〈 type-name+/,〉〉〉}?pointer? direct-declarator

direct-declarator ::= direct-declarator{〈〈〈 tyvar-context+/,〉〉〉}? !?(parameter-type-list) | . . .
tyvar-context ::= identifier tyvar-name

direct-abstract-declarator ::= {direct-abstract-declarator}? !?(parameter-type-list) | . . .
expression ::= init-expression+/,

init-expression ::= struct-init| tagged-init| alloc-init | unsafe-expression
struct-init ::= { init-expression+/,}

tagged-init ::= tag-nameinit-expression
alloc-init ::= {alloc | new} init-expression

unsafe-expression ::= unsafeunsafe-expression| assignment-expression
postfix-expression ::= postfix-expression(init-expression*/,) lambda-expression*| . . .
lambda-expression ::= { parameter-declaration*: declaration* statement*}

expression-statement ::= unsafe-expression+/, ;
labeled-statement ::= casecase-pattern: statement| identifier: statement| default : statement

jump-statement ::= ret expression| return expression| break | continue | goto identifier
case-pattern ::= constant-expression| tag-name| tag-name identifier

external-declaration ::= function-definition| declaration| interface-definition| implement-definition
interface-definition ::= interface identifier tyvar-name{ declaration*}

implement-definition ::= implement identifier type-name{: typevar-context+/,}?{ function-definition*}

Figure 3. Jekyll Extensions to ANSI C Syntax (underline = modification, “+/,” = comma separated list)

sincereturn inside awhile loop would return from the top level
function, not from a closure.

2.4 Extended Initialiser Expressions

Jekyll introduces several new forms of initialiser expression:

• Allocation initialisers (lines18 and 20) allocate a new block of
data on the heap, and initialise its contents. The “new” keyword
indicates that the data should be freed by a garbage collector,
while the “alloc” keyword indicates that the programmer will
free the memory manually. This keyword is followed by an
initialiser for the data contents.

• Tagged initialisers (lines18 and20) create a new tagged value. If
the tag body type is non-void then the tag must be followed by
an initialiser for the tag body.

• Struct initialisers (line20) are like struct initialisers in C, except
that they can be used as normal expressions.

The Jekyll type checker will attempt to infer the type of the
initialised value from its surrounding context. If the type checker
cannot infer an expressions’s type, then it may be necessary to
specify the type of the expression using a cast. For example:

(MyStruct) {3,4}

Although Jekyll provides syntax that makes it easy to use a
garbage collector, Jekyll does not require that a garbage collector
be available. If a Jekyll program does not use thenew keyword, then
it is not necessary for the program to be linked against a garbage
collection library.

2.5 Type Classes

Type Classes [12, 36, 16] are similar to Java’s [14] interfaces in
that they allow one to define collections of operations that can
be implemented for many types; however they differ in several
important respects:

• Type classes allow one to implement interfaces for types that
have already been defined. This makes it easy to use interfaces
with types that are defined in a library, or in parts of the program
that should not be modified.

• Type classes can be implemented using dictionary passing (Sec-
tion 3.3), rather than using a vtable. This avoids the need to
change the data-representation of objects or use a special allo-
cator.

• Type class methods can refer to the implementing type any
number of times in their function arguments and return type,
rather than having an implicitthis argument. This can make
some programming idioms simpler [36].

Jekyll implements the full type class system from Haskell98 [29],
including constructor classes. We have however renamed most of
the type class concepts in order to make them more approachable
for programmers who are familiar with languages such as C++ and
Java. In particular “class” is now called “interface” and “instance”
is now called “implement”.

The syntax for defining a new interface is similar to Java. Line36

defines an interfaceNum for types that implement aplus operation
and can be converted from an integer. Line41 shows how we can
implementNum for int. Note that, unlike Java, the implementation
of Num is separated from the definition ofint (which is built in).

Line 26 defines an interfaceMappable for types that implement
amap function. This is a constructor class [36] – the typecol must
be passed a type argument (the element type) in order to make a
complete type.

Line 46 defines a function that can add anint to any type
provided that the type implementsNum. The call tofromInt has
its type resolved by its return type, which is inferred from the type
of the first argument toplus.

2.6 Safety

Like C# [5], Jekyll requires that all unsafe expressions be marked
as unsafe, by preceding them with theunsafe keyword. This tells

4 2005/11/9

the Jekyll translator that the programmer is aware that the expres-
sion is potentially unsafe and that the Jekyll translator should not
warn the programmer about that expression. If the unsafe keyword
is omitted, then Jekyll will warn about potentially unsafe expres-
sions, including those that use pointer arithmetic, unsafe casts, and
unchecked array accesses.

2.7 Limitations

In the design of Jekyll, there is an unavoidable trade-off between
making the language elegant, and making it inter-translatable with
elegant C. As part of this trade-off, we have decided to impose the
following limitations on Jekyll:

• Type variables cannot be referred to other than through pointers
(Section 2.2).

• Jekyll’s type safety can be broken if one links two Jekyll object
files that define symbols that have the same name but different
types. This problem can be easily fixed by using a build tool
that checks for this issue.

• In some places Jekyll’s syntax is restricted by the need to be a
superset of C.

• Jekyll programmers cannot assume the presence of tail recur-
sion optimisation.

• Jekyll does not make evaluation order guarantees beyond those
provided by C.

2.8 Macros

The current implementation has only a very simple understanding
of the C preprocessor. If a macro is a simple constant definition then
Jekyll will handle it correctly without needing further direction. If
a macro is a function, or a complex expression whose type cannot
easily be inferred, then it is necessary to explicitly specify a type
for the macro, using a line such as the following:

unsafe macrotype int max(int,int);

In the future we intend to extend Jekyll’s macro support to un-
derstand more uses of macros without requiring manual direction.
We are currently investigating a design that expands macros dur-
ing the lexer, and then re-collapses them during the pretty-printer.
When implemented, this should allow Jekyll to understand all uses
of C macros. An alternative would be for use Macroscope [21].

2.9 Compiler-Specific Extensions

The current version of Jekyll supports all the features in ANSI C,
but many C program make use of compiler-specific extensions, par-
ticularly those provided by GNU C [30]. Jekyll currently supports
some of these extensions, and it is our intention to eventually sup-
port all of the extensions in common use.

When a programmer uses a feature in a Jekyll program that is
supported by some C compilers but not all, the Jekyll translator has
a choice. It can either pass that feature through into the generated
C code and rely on the the C compiler to support it, or it can
encode the feature using more commonly supported features. The
current implementation passes some features through, and encodes
some others. In the future, we intend to offer a choice of multiple
C encodings that assume the availability of different compiler-
specific extensions (Section 3.5).

2.10 Future Features

While Jekyll is already a very usable language, there are a number
of additional features that we plan to add in the near future that will
make it significantly more powerful, including the following:

• Concurrency features

#define typevar typedef void
#define tagged struct
#define interface struct
#define ret return
#define unsafe /* nothing */
#define macrotype(x) /* nothing */
#define _p(x) /* nothing */
#define _match /* nothing */
#define _fwd /* nothing */
#define _temp /* nothing */
#define _dictionary /* nothing */
#define _localfun /* nothing */
#define _void(x) /* nothing */
#define _tagbody /* nothing */
#define _env /* nothing */
#define _g(x) (x)
#define _envarg void* _denv
#define _argdict(iface,ty) ty##_##iface##_dict
#define _argenv(iface,ty) ty##_##iface##_env
#define _typaram(iface,ty) \

struct iface* _argdict(iface,ty), \
void* _argenv(iface,ty)

#define _dictenv(iface,ty) \
struct _argenv(iface,ty)* _denv

#define implement(iface,kind,ty,tyargs,context) \
struct _argenv(iface,ty) { context ;};

#define _needs(iface,ty) \
struct iface* _argdict(iface,ty); \
void* _argenv(iface,ty);

#define _globdict(iface,ty) \
((struct iface*)&_argdict(iface,ty))

Figure 4. The contents ofjekyll 1.h

Figure 5. Jekyll and C code parses to a Common AST

• Safe pointers to stack-allocated variables (which are currently
treated as unsafe)

• Existential types / Object-carried vtables

• Heap-allocated closures

• Distinguishing between nullable and non-nullable pointers

• User-defined operators

• User-defined automatic coercions

• Curried function application

• More expressive pattern matching support

• Effect types

• Removing the pointer restriction on type variables (Section 2.2)

• More complete macro support (Section 2.8)

• A library of useful types, including safe arrays and safe strings

We also plan to improve the format of the generated C code to
make it more readable.

3. Encoding Jekyll Features in C
The right hand side of Figure 2 shows the C code that results when
we translate our Jekyll example to C. The Jekyll and C versions
of the program parse to the same AST and each can be exactly

5 2005/11/9

recreated from the other (Figure 5). We can note the following
properties in the C encoding:

• Special macros (defined in Figure 4) are used to encode Jekyll
features such that Jekyll’s C parser can decode them

• The C file may place some expressions in a different order to
the Jekyll file (e.g. line26).

• Some functions have additionaldictionary arguments (e.g. C
line 69)

• Some functions have additionalenvironmentarguments (e.g. C
line 74)

• Both files have the same layout and comments

• The C file starts with#include <jekyll 1.h>

In the following sections we will discuss each of these topics
further.

3.1 Special Macros

If a Jekyll statement only uses features that are present in C then the
corresponding C statement will be identical to the Jekyll statement.

If a Jekyll statement uses features that are not present in C then
the Jekyll-specific features are encoded in C using a number of
special macros. The primary purpose of these macros is to allow
Jekyll’s C parser to recognise the Jekyll feature that the C code
is implementing. The C definitions of these macros are given in
jekyll 1.h, the source of which is given in Figure 4.

The meanings of these macros should be fairly self-evident.
typevar, tagged, interface, ret and match tell Jekyll that
the corresponding Jekyll feature is being used and that the follow-
ing C code should be interpreted accordingly.fwd, temp and
localfun provide forward declarations of temporary variables

or lambda expressions. Most of the other macros are used to im-
plement dictionary passing (Section 3.3) and environment passing
(Section 3.4).

To avoid name clashes, all Jekyll macros are considered to
be reserved words in Jekyll, and the translator disallows variable
names that clash with generated temporary names.

3.2 Code Reordering

In some cases, the C file places expressions in a different order
to the Jekyll file. For example lambda expressions will be defined
before their use (Jekyll line52 and C line75), and initialisers will be
executed before their results are used (Jekyll line20 and C line26).

Such code reordering is often necessary in order to produce an
elegant encoding into C. This reordering is one of the major factors
complicating the implementation of lossless translation (Section 4).

3.3 Dictionary Passing

Like GHC [28], we implement Type Classes using Dictionary Pass-
ing. If a function requires that a type variable implements an inter-
face (e.g. Jekyll line46 in Figure 2) we add an additionaldictionary
argument to the C version of the function (e.g. C line69 in Figure 2).
This dictionary contains pointers to the functions that implement
that interface for that type variable.

This is in contrast to languages such as C++ [33] and Java [14]
in which method implementations are obtained from the data,
rather than the caller.

3.4 Environment Arguments

In some cases, the C version of a function will have extraenvi-
ronmentarguments that were not present in the Jekyll version. For
example lambda expressions are passed an environment containing
definitions for any free variables (e.g. C line74 in Figure 2).

Figure 6. Top level structure of the Jekyll translator. (Types given
in Section 4.4)

Such additional arguments are tagged with Jekyll macros so that
the Jekyll translator can recognise them when translating back to
Jekyll code.

3.5 The Jekyll Include Line

The first line of the C file#includes a Jekyll header. This line
serves two purposes:(i) it tells the C compiler what the Jekyll
macros mean, and(ii) the name of the included file tells the Jekyll
translator which C encoding has been used for the file (in this case
version 1).

Although our current implementation only supports one encod-
ing into C, we plan to support a number of different encodings.
These different encodings would use different coding conventions
and make use of different language extensions that might be avail-
able in a C compiler. For example an encoding that relied on GCC
extensions would need less code reordering, and an encoding that
targeted C++ could make use of C++ features.

4. Lossless Translation
As we stated in Section 1.1, the translation between Jekyll and C
is guaranteed to be lossless. By this we mean that if a Jekyll file
is translated to C and back again, the resulting file is guaranteed
to be bit-for-bit identical to the original file, preserving layout,
comments, and everything else. In this section we explain how we
do this.

4.1 Token Twinning

We assign every Jekyll token a C token that is itstwin. Every C
token is either twinned with a Jekyll token, or isuntwinned.

An example of twins is illustrated in the top half of Figure 7
which shows example token twins in a section of code from Fig-
ure 2. Grayed out C tokens are those that are untwinned.

A token’s twin may be a different string. For example “new” is
twinned with “GCmalloc” in Figure 7.

4.2 Whitespace

To achieve lossless translation, it is necessary that all whitespace
(including comments) present in the Jekyll file be encoded in the C
file in such a way that it can be retrieved when the file is translated
back to Jekyll.

We consider all whitespace to be attached to the token that
immediately follows. For example, in the following example the
whitespace for “x” is “ ” and the whitespace for3 is “ /* hello */ ”:

int x = /* hello */ 3;

If two tokens are twins, then they have the same whitespace.
This allows us to store Jekyll whitespace in the C file such that it
can be retrieved when the C file is translated back to Jekyll. The
links at the bottom of Figure 7 give examples of cases where Jekyll
whitespace is carried over into C.

The whitespace for an untwinned token is chosen by the trans-
lator. For example the third line in Figure 7 has been indented to
match the sixth line.

6 2005/11/9

Figure 7. How tokens and whitespace map between Jekyll and C versions of a file

Figure 8. Whitespace from from Jekyll to C (u = untwinned)

Figure 9. Whitespace flow from C to Jekyll (u = untwinned)

4.3 Twinned Pretty Printing

So, how does the translator know which input token is twinned with
which output token?

Our approach is to have a single pretty-printing function that
generates token lists for Jekyll and C simultaneously, while record-
ing which tokens are twinned together. Given such twinned token
lists, the translator can follow the procedure in Figures 6 and 8 to
translate a file from Jekyll to C:

• Lex the Jekyll file, producing a token list annotated with whites-
pace.

• Parse the token list, giving an abstract syntax tree (AST).

• Typecheck the abstract syntax tree.

• Pretty print the abstract syntax tree, giving token lists for Jekyll
and C, with each Jekyll token twinned with a C token — the
generated Jekyll token list should be identical to the input Jekyll
token list, except that it has no whitespace information.

• Match the generated Jekyll token list with the parsed token list,
and thus determine the whitespace for each generated Jekyll
token — the generated Jekyll token list is now identical to the
input token list, including whitespace.

• Using the twinning information, determine the whitespace for
each twinned C token.

• Output the C tokens, complete with whitespace taken from the
Jekyll

The procedure for converting C to Jekyll (Figure 9) is essentially
the same. We match the generated C code to the parsed C code to
obtain the whitespace for the generated Jekyll code. It should be
easy to see that, provided the output parses to the same AST as the
input, Figure 9 is the inverse of Figure 8.

When converting C to Jekyll it is possible that the process of
matching the pretty printed tokens to the parsed tokens might fail.
We discuss this in Section 4.8.

This twinned-pretty-printing approach has several advantages
over manually linking input tokens to output tokens. Firstly, the
parser and pretty printer do not have to think about the tokens
from the input list, since they are dealt with in the matching stage.
Secondly, and perhaps more importantly, the parser does not have
to worry about checking the correctness of C boilerplate code, since
it will be checked by the matcher (see Section 4.8).

4.4 Twinning Combinators

We use a set of pretty printing combinators to allow us to easily
write pretty printers that produce twinned token lists for Jekyll and
C.

7 2005/11/9

type token = {
body : string; mutable white : string;
mutable twin : token option}

type ptlist = token list * token list

let mk s = {body = s; white = ""; twin = None}
let link t1 t2 = t1.twin <- Some t2;

t2.twin <- Some t1

let (<+>) (j1,c1) (j2,c2) = (j1 @ j2,c1 @ c2)
let empty = ([],[])
let twin j c = let jt,ct = mk j, mk c in

link jt ct; ([jt],[ct])
let onlyc s = ([],[mk s])
let extract_c (j,c) = ([],c)
let extract_jkl (j,c) = (j,[])

Figure 10. Simplified Implementation of Twinned Combinators

The combinators we use are loosely based on those of Hughes [13]
and Wadler [34], with extensions to support the generation of
twinned token lists. A simplified O’Caml [18] implementation of
these operations is given in Figure 10. Their types are as follows:

val <+> : ptlist -> ptlist -> ptlist
val empty : ptlist
val twin : string -> string -> ptlist
val onlyc : string -> ptlist
val extract_c : ptlist -> ptlist
val extract_jkl : ptlist -> ptlist

The typeptlist consists of twotoken lists, one for Jekyll and
one for C. Atoken contains a body string, some whitespace, and,
unless it is untwinned, a reference to its twin.

The combinators are as follows:

• <+>2 concatenates twoptlists together.

• empty is aptlist that contains no tokens

• twin generates twinned tokens. The first argument is the string
for the Jekyll token and the second argument is the string for
the C token. For convenience, we definestr x = twin x x.

• onlyc generates an untwinned token. This token is only emitted
into the C list.

• extract c and extract jkl are used to reorder tokens.
extract c extracts the C part of aptlist ignoring the Jekyll
part. Similarly,extract jkl extracts the Jekyll part and ig-
nores the C part. Every call toextract c should be accompa-
nied by a call toextract jkl with the same argument.

As an example, consider the following O’Caml expression:

let x = twin "a" "b" in
extract_c x <+> twin "c" "d" <+> extract_jkl x

This will produce the Jekyll list “[c,a]”, and the C list
“[b,d]”, where “a” and “b” are twins and “c” and “d” are twins.

Our full combinator library contains a larger, richer set of com-
binators. In particular, it contains a number of combinators that are
used to specify what whitespace should be attached to untwinned
C tokens.

2 Hughes calls his operator<>. We could not use this name as it means
inequality in OCaml [18].

let token_match t_in t_gen =
if t_in.body <> t_gen.body then warn ();
if t_gen.white <> t_in.white

&& t_gen.twin = None then warn ();
t_gen.white <- t_in.white

let white_flow t = match t.twin with
| Some p -> p.white <- t.white
| None -> ()

let jkl_to_c (j,c) input =
iter2 token_match input j;
iter white_flow j;
c

let c_to_jkl (j,c) input =
iter2 token_match input c;
iter white_flow c;
j

Figure 11. Simplified Implementation of Translation

4.5 Doing the Translation

The actual translation is done by the functionsc to jkl and
jkl to c, given in Figure 11. Their O’Caml signatures are as fol-
lows:

val jkl_to_c : ptlist -> token list -> token list
val c_to_jkl : ptlist -> token list -> token list

jkl to c andc to jkl use aptlist to translate an input to-
ken list into an output token list.jkl to c translates a Jekyll to C
andc to jkl translates C to Jekyll. They do this using the proce-
dure given in Section 4.3: input tokens are matched against gener-
ated tokens (token match) and then whitespace flows through the
twin links to output tokens (white flow).

The definitions of these functions make use of the standard
O’Caml [18] functionsiter anditer2. iter applies a function to
all elements of a list, anditer2 applies a function to all elements
of two lists – e.g. both first elements, then both second elements,
etc.

4.6 Whitespace for Untwinned Tokens

The definition ofonlyc in Figure 10 gives untwinned tokens empty
whitespace. In our real implementation the translator uses addi-
tional combinators to specify what whitespace should be attached
to untwinned tokens. For example thenewline combinator speci-
fies a point at which a new line should start, and themaybebreak
combinator specifies a point at which a new line should start if the
line would otherwise be too long. When a new line is started, the
translator uses the surrounding lines to determine how much the
line should be indented. Examples of this can be seen in Figure 2.

4.7 Mismatched Whitespace for Untwinned Tokens

The definition oftoken match in Figure 10 will warn if asked to
match an untwinned C token with a generated token that has differ-
ent whitespace. This warning indicates the fact that the whitespace
attached to this token will not be preserved, since it is different to
the whitespace that will be chosen by the translator when the file
is translated back to C. The translator will draw particular attention
to lost whitespace that contains comments. If there are no warnings
then the translation is guaranteed to have been lossless.

In practice, we have not found this potential loss of whitespace
to be a problem. Whitespace can only be lost if a programmer has
actively edited C code that encodes Jekyll features. This means that

8 2005/11/9

any changes to whitespace will be in areas of the program in which
the programmer has been working and thus version control systems
will not show spurious changes.

4.8 Malformed C files

Not all C files can be translated to valid Jekyll files. If a C file
makes use of Jekyll macros in an invalid way then it will not be
possible to translate it to a Jekyll file with equivalent meaning. In
particular, a C file may contain sections of boilerplate code (e.g.
line 45 in Figure 2). If this boilerplate is modified incorrectly then it
will not correspond to a valid Jekyll construct.

Our token matching approach allows us to handle such mal-
formed C files easily. Our parser ignores generated boilerplate code
completely. It is the role of the matching stage (Section 4.3) to
check that the parsed C tokens are the same as those that it would
pretty print for the parsed abstract syntax tree.

If the matching stage finds that the input tokens do not match
the generated tokens, it will warn the user. This will result in the
user seeing a warning message such as the following:

File examples/demo.c : 66 characters 12 - 15
Malformed input file: expected fromInt but given fInt

int * (*fInt)(_dictenv(Num, int), int x);
^^^^

5. Related Work
Many of the ideas in Jekyll are similar to ideas that have appeared
in previous work. Many other people have developed languages
with similar features, languages that extend C, languages that are
embedded in C, compilers that use C as a back end, tools that
translate one language into another, tools that transform programs
while preserving formatting and comments, or tools that present
multiple representations of a program.

However, as far as we are aware, no previous work has produced
a high-level language that is losslessly inter-translatable with C.

5.1 Languages with Similar Features

All the language features present in Jekyll have appeared previ-
ously in other languages. Jekyll’s type system has been largely
lifted from Haskell [29], including type classes [12, 36, 16], para-
metric polymorphism, algebraic datatypes, and closures. Jekyll’s
stack-allocated closures are similar to those of ALGOL [25]. Many
of Jekyll’s features also appear in O’Caml [18] and other functional
languages. Recently, Microsoft’s LINQ [1] project has extended C#
with similar features, including lambda expressions, and separation
of implementation from types.

Jekyll’s advantage over these other languages is that it can be
losslessly translated to and from C. Jekyll’s disadvantage is that
it is notably less elegant than these other languages, due to the
requirement that it be losslessly inter-translatable with C.

5.2 Languages that extend C

Many languages have extended C with new features. Cyclone [15],
Vault [7], Ivy [2], C++ [33], Objective C [27] and many others all
add useful new features to the core C language.

While existing C code is usually valid in these languages, any
use of new features will prevent the program being a valid C
program. As with Section 5.1, these languages are often more
elegant than Jekyll since they do not need to be inter-translatable
with C.

5.3 Languages embedded in C

Several authors have designed systems that use similar techniques
to those described in Section 3 to embed extra features into C pro-

grams. CCured [26] allows a programmer to annotate their C pro-
grams with safety annotations, which are used by the CCured com-
piler, but ignored by a C compiler. FC++ [22] is a template library
that makes it easy to express common functional programming id-
ioms.

These languages benefit from the ability to retain full C/C++
compatibility without translation, but are forced to use non-optimal
syntax in order to do so — as with our encoding of Jekyll into C.

5.4 C as a Back End

Many compilers for high-level languages translate to C as part of
their compilation process. Examples of this include GHC [28] and
CFront [32]. Unlike Jekyll, the generated C is not intended to be
human readable, and the translation is not intended to be reversible.

5.5 Inter-Language Translation

Many people have implemented language translators that translate
one language into another. For example FORC [3] translates FOR-
TRAN to C, and p2c [11] translates Pascal to C.

Like Jekyll, the resulting program is expected to be readable.
Unlike Jekyll, the translation is expected to be a one-off one-way
event, and so there is no need to exactly preserve formatting or
make the transformation reversible.

5.6 Format Preserving Code Transformation

We are not the first to attempt to transform a program while preserv-
ing formatting. Many tools for program refactoring [23, 9], such as
HaRe [19] and Eclipse [8] make changes to a program while pre-
serving the program formatting. Like Jekyll, such tools typically
work simultaneously with both an abstract syntax tree and a token
list [19].

Unlike Jekyll, refactoring editors do not need to map one lan-
guage into another, or need to guarantee that their transforma-
tions are reversible. Refactoring editors thus have no need for the
twinned-token techniques we described in Section 4.

5.7 Language Workbenches

A Language Workbench [10] is an integrated development environ-
ment (IDE) in which a programmer writes software using a number
of user-defined domain specific languages (DSLs). In some cases it
may be possible for the IDE to represent the same abstract syntax
tree using several different DSLs (e.g. graphical and Java represen-
tations of a GUI).

Unlike Jekyll, it is not necessary to preserve layout information,
since it is assumed that DSLs are edited graphically or that there
is a canonical correct textual representation. There is also no re-
quirement that each language contain all information present in the
others, since the persistent AST is the authoritative representation,
not the program text.

6. Conclusions
By being losslessly inter-translatable with C, Jekyll makes it practi-
cal for developers to move away from C. Lossless translation allows
developers to make use of C programmers, C tools, and C libraries
in a way that would not be practical otherwise. Moreover lossless
translation avoids one of the software developer’s worst nightmares
— that their code will be trapped in a dead language for which no
tools or programmers are available.

Jekyll is not perfect. The language makes considerable elegancy
sacrifices in order to inter-translate with C, the current C encoding
of Jekyll features can be confusing for C programmers who are not
accustomed to it, many useful features are currently missing, and
type-safety requires that all code be ported to Jekyll and all uses
of “unsafe” be eliminated. We do however believe that Jekyll is a
step in a sensible direction.

9 2005/11/9

We believe the approach taken by Jekyll is more generally
applicable. Indeed, we are exploring the possibility of designing
languages that are losslessly translatable with COBOL, Verilog,
and Java.

Availability
All features described in this paper have been implemented in
our Jekyll translator, which is available on SourceForge at:http:
//sourceforge.net/projects/jekyllc

The example shown in Figure 2 can be found in the file “exam-
ples/drjekyll examples.jkl” in the Jekyll distribution.

We encourage readers to download Jekyll and try it out.

Acknowledgments
We would like to thank Michael Dales, Simon Peyton Jones,
Greg Morrisett, Alan Mycroft, Matthew Parkinson, Claus Reinke,
Richard Sharp, and Simon Thompson for providing useful sugges-
tions.

References
[1] BOX, D., AND HEJLSBERG, A. The LINQ project. Microsoft MSDN

Library, Sept. 2005.

[2] BREWER, E., CONDIT, J., MCCLOSKY, B., AND ZHOU, F. Thirty
years is long enough: Getting beyond C. InProceedings of the
USENIX workshop on Hot topics in Operating Systems(2005).

[3] FOR C: Converts FORTRAN into readable, maintainable C code.
http://www.cobalt-blue.com.

[4] CORDY, J. R. Comprehending reality - practical barriers to industrial
adoption of software maintenance automation. InProceedings of the
IEEE Workshop on Program Comprehension (IWPC’03)(May 2003).

[5] C# Language Specification. ECMA, June 2005.

[6] DATE, C. J.A Guide to the SQL Standard. Addison-Wesley, 1986.

[7] DEL INE, R., AND FAHNDRICH, M. Enforcing high-level protocols
in low-level software. InProceedings of the ACM conference on
Programming Language Design and Implementation(2001).

[8] The Eclipse Project.http://www.eclipse.org.

[9] FOWLER, M. Refactoring: Improving the design of existing code.
Object Technology Series. Addison-Wesley, 2000.

[10] FOWLER, M. Language workbenches: The killer-app for domain
specific languages.http://www.martinfowler.com/articles/
languageWorkbench.html, June 2005.

[11] GILLESPIE, D. p2c – a Pascal to C translator.

[12] HALL , C., HAMMOND , K., JONES, S. P.,AND WADLER, P. Type
classes in Haskell. InProceedings of the European Symposium on
Programming (ESOP’94)(Apr. 1994).

[13] HUGHES, J. The Design of a Pretty-printing Library. InAdvanced
Functional Programming(1995), J. Jeuring and E. Meijer, Eds.,
Springer Verlag, LNCS 925, pp. 53–96.

[14] The Java Language Specification, third edition. Sun Microsystems,
2005.

[15] JIM , T., MORRISETT, G., GROSSMAN, D., HICKS, M., CHENEY,
J., AND WANG, Y. Cyclone: A safe dialect of C. InProceedings of
the USENIX annual technical conference(2002).

[16] JONES, S. P., JONES, M., AND MEIJER, E. Type classes: exploring
the design space. InProceedings of the ACM Haskell Workshop
(1997).

[17] KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming
Language, second ed. Prentice Hall, Englewood Cliffs, NJ, 1988.

[18] LEROY, X., DOLIGEZ, D., GARRIGUE, J., REMY, D., AND

VOUILLON , J. The Objective Caml system release 3.08, July 2004.

[19] L I , H., THOMPSON, S., AND REINKE, C. The Haskell refactorer,
HaRe and its api. InProceedings of the fifth workshop on Language
Descriptions, Tools and Applications (LDTA’05)(2005).

[20] MASHEY, J. R. Languages, levels, libraries, and longevity.ACM
Queue 2, 9 (Dec. 2004).

[21] MCCLOSKEY, B., AND BREWER, E. ASTEC: A new approach
to refactoring c. InProceedings of the 10th European Software
Engineering Conference(Sept. 2005).

[22] MCNAMARA , B., AND SMARAGDAKIS , Y. Functional programming
in C++. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP’00)(Sept. 2000).

[23] MENS, T., AND TOURWE, T. A survey of software refactoring.IEEE
Transactions of Software Engineering 30, 2 (Feb. 2004).

[24] M ILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[25] NAUR, P., AND BACKUS, J. W. Revised report on the algorithmic
language ALGOL.Communications of the ACM 6(Jan. 1963).

[26] NECULAR, G. C., CONDIT, J., HARREN, M., MCPEAK , S., AND

WEIMER, W. CCured: type-safe retrofitting of legacy software.ACM
Transactions on Programming Languages and Systems(2004).

[27] The Objective C Programming Language. Apple, Oct. 2005.

[28] PEYTON JONES, S., HALL , C., HAMMOND , K., PARTAIN , W.,
AND WADLER, P. The Glasgow Haskell Compiler: a technical
overview. In Proceedings of Joint Framework for Information
Technology Technical Conference, Keele(Mar. 1993), DTI/SERC,
pp. 249–257.

[29] PEYTON JONES, S., HUGHES, R., AUGUSTSSON, L., BARTON, D.,
BOUTEL, B., BURTON, W., FASEL, J., HAMMOND , K., HINZE,
R., HUDAK , P., JOHNSSON, T., JONES, M., LAUNCHBURY, J.,
MEIJER, E., PETERSON, J., REID, A., RUNCIMAN , C., AND

WADLER, P. Report on the programming language Haskell 98.
http://haskell.org, Feb. 1999.

[30] STALLMAN , R. M. Using and Porting GNU CC (Version 2.0). Free
Software Foundation, Feb. 1992.

[31] STONE, J. D. The syntax of C in backus-naur form.http://www.
math.grin.edu/∼stone/courses/languages/C-syntax.
xhtml, Jan. 2002.

[32] STROUSTRUP, B. The Design and Evolution of C++. Addison
Wesley, 1994.

[33] STROUSTRUP, B. The C++ Programming Language. Addison
Wesley, 1997.

[34] WADLER, P. A prettier printer. InThe Fun of Programming(Apr.
1997).

[35] WADLER, P. Why no-one uses functional languages.SIGPLAN
Notices 33(Aug. 1998).

[36] WADLER, P., AND BLOTT, S. How to make ad-hoc polymorphism
less ad hoc. InProceedings of the ACM Symposium on Principles of
Programming Languages(1989).

[37] WALL , L., CHRISTIANSEN, T., AND ORWANT, J. Programming
Perl. O’Reilly, July 2000.

10 2005/11/9

http://sourceforge.net/projects/jekyllc
http://sourceforge.net/projects/jekyllc
http://www.eclipse.org
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.math.grin.edu/~stone/courses/languages/C-syntax.xhtml
http://www.math.grin.edu/~stone/courses/languages/C-syntax.xhtml
http://www.math.grin.edu/~stone/courses/languages/C-syntax.xhtml

	Introduction
	Lossless Translation
	The Jekyll Language
	Contributions

	The Jekyll Language
	Tagged Unions
	Generic Types
	Stack-Allocated Closures and Lambda Expressions
	Extended Initialiser Expressions
	Type Classes
	Safety
	Limitations
	Macros
	Compiler-Specific Extensions
	Future Features

	Encoding Jekyll Features in C
	Special Macros
	Code Reordering
	Dictionary Passing
	Environment Arguments
	The Jekyll Include Line

	Lossless Translation
	Token Twinning
	Whitespace
	Twinned Pretty Printing
	Twinning Combinators
	Doing the Translation
	Whitespace for Untwinned Tokens
	Mismatched Whitespace for Untwinned Tokens
	Malformed C files

	Related Work
	Languages with Similar Features
	Languages that extend C
	Languages embedded in C
	C as a Back End
	Inter-Language Translation
	Format Preserving Code Transformation
	Language Workbenches

	Conclusions

